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A model for adsorbed monolayers of orientable molecules
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Institut Laue-Langevin 156X Centre de Tri, 38042 Grenoble Cedex, France

Received 1 May 1979

Abstract. Real-space renormalisation group methods are used to study a two-dimensional
lattice fluid model on a triangular lattice with application to adsorbed monolayers of orien-
table molecules. The phase diagram is obtained for various strengths of the couplings between
the molecules, There are four different phases which correspond to the gas, liquid and
commensurate solid phases of the model. Two types of solid phase are considered: the first
is a close-packed solid phase in which all molecules have the same orientation relative to the
substrate and the second is an open honeycomb structure in which the molecules have
opposing orientations. The fixed points and critical exponents which describe the transitions
between these different phases are obtained. In all cases the melting transition is found to be
second order. The results may have some application to monolayers of methane or ammonia,
adsorbed onto a graphite substrate.

1. Introduction

The study of two-dimensional models is important because of the increasing experi-
mental investigation of physically and chemically adsorbed systems. Adsorbed mono-
layers on an ideal substrate may exhibit transitions between ‘two-dimensional (2D) gas’,
2D liquid’ and “2D solid phases’ as the substrate coverage is varied (Thomy and Duval
1970). Rare-gas monolayers on graphite have been extensively studied using a variety
of experimental methods and transitions from commensurate structures to structures
which are incommensurate with the substrate have also been observed (see McTague
et al 1979 for a recent survey). In the case of the ‘commensurable solids’, lattice gas models
have been employed to describe the melting transition (Schick et al 1977, Berker et al
1978). The adsorbed molecules are assumed to be well localised on preferred adsorption
sites on the substrate and in the case of graphite these sites form a triangular lattice.
Since two molecules adsorbed onto nearest-neighbour sites experience an unfavourable
potential because of size effects, the registered solid phase in the rare-gas systems cor-
responds to a preferential occupation of one of the three sublattices of the adsorption site
lattice. In contrast, the liquid phase has, on average, equivalent occupation of all three
sublattices. In any real system, the solid phase will consist of three different types of
domain within which one of the three sublattices is preferentially occupied. These
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domains will be separated by narrow walls. We, however, shall only consider the be-
haviour which is characteristic of a single domain.

An extension of the simpler lattice fluid models to the case where the molecules
have some ‘structure’ is considered in the present paper. A related model on a triangular
lattice was first introduced (Bell and Lavis 1970) to simulate the strongly directional
nature of hydrogen bonding in water and aqueous solutions. In the present model each
molecule is assumed to be triangular in shape and to have a restricted number of pre-
ferred orientations with respect to the underlying triangular lattice of adsorption sites.
The model is a slight generalisation of the Blume-Emery~-Griffiths (1971) model which
has been used to study both *He~*He mixtures as well as the competition between dipole
and quadrupole ordering in magnets. As a result of the orientational degree of freedom,
the model can exhibit two different types of commensurable solid phase. One of these is
a close-packed (ferromagnetic) solid in which all molecules have the same orientation
relative to the substrate and which appears at densities near monolayer completion. At
intermediate coverages, an open honeycomb (antiferromagnetic) solid phase can occur
in which two thirds of the sites are preferentially occupied by molecules with opposing
orientations.

The model is investigated using a real-space renormalisation group (RSRG) method
(for a review see Niemeijer and van Leeuwen 1976). The phase diagram is determined for
various choices of the coupling constants as a function of the chemical potential x and
also as a function of the molecular density p, since the experiments on adsorbed systems
are generally performed at constant coverage. The model is introduced in §2 and the
renormalisation group transformation is briefly described. In §3 the results for the phase
diagram are presented together with the fixed points and critical exponents which
describe the various transitions. Our conclusions are summarised in §4.

2. The model

Each molecule is taken to be triangular in shape and is restricted to point towards any
of the six nearest-neighbour sites on a triangular lattice. Hence there are two distinct
orientations for a molecule at each adsorption site and these are identified with the spin
states S = + 1 ofaspin —1 Ising model as shown in figure 1. A vacant site is represented

la)
> P>
{c)
> ‘
Figure 1. Allowed orientations of a pair of molecules on adjacent sites with the spin states

S = %1 indicated. Configurations (g) and (b) have energy —{e + 6), () has energy
—(e — @ + 1) and (d) has energy —(¢ — ()).
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by the state S = 0 and the molecular density is therefore given by p = (S2>. A pair of
molecules on adjacent sites has an energy —(e + 0) if they are both in the same orienta-
tional state (figure 1a and b). However, if they have opposite orientations, then there are
two possible energies as indicated in figure 1(c) and (d). Molecules with vertices pointing
towards each other have an energy —(¢ — ¢ + w) whereas molecules with vertices
pointing away from each other have an energy —(e — 6). The parameter w reflects the
difference in separation of the vertices for the pair of molecules in these two cases.

A =] c A B

Figure 2, A portion of the triangular lattice showing the convention adopted for labelling
the three sublattices A, B and C.

In order to take proper account of sublattice orderings, the triangular lattice is
divided into three equivalent sublattices A, B and C as indicated in figure 2. The mean
density of molecules is fixed by using the grand canonical distribution with the chemical
potential u as an independent variable. In terms of the spin — 1 variables, the Hamiltonian
of the system is given by (Young and Lavis 1979)

H=)H,
A
with
H, = —3tu(S% + St + SZ) —30 — w/a)(S,Ss + SpSc + ScSu)
—-%(e + w/4)(SiS‘?3 + SgSé + SéSi) +§W(SA — Sp)(Sg ~ SHSc — S, )

where the summation is over all elementary triangles of the lattice and S (o = A, B, C)
denotes the spin of the site on sublattice « in triangle A. Apart from the final term in (1)
this Hamiltonian has the same form as the Blume-Emery-Griffiths model. The special
feature of the present model is exhibited by the final term which removes the degeneracy
associated with cyclic and anticyclic ordering of the states S = +1, 0, —1 around an
elementary triangle. The model first introduced by Bell and Lavis (1970) corresponds to
the case 6§ = 0.

We use the block spin transformation employed by Schick et al (1977) in their study
of the spin — $ Ising model. An initial cluster of nine sites is chosen such that three sites
belong to each of the three sublattices and periodic boundary conditions are imposed.
Application of the renormalisation group transformation reduces the nine-site cluster
to a cluster of three sites, each one belonging to one of the three sublattices, and cor-
responds to an increase in length scale by a factor of V3. In any RSRG calculation all
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terms which are generated by the recurrence relations must be included, even if they are
not present in the initial Hamiltonian. In our case, two additional terms are generated
involving all three spins of the elementary triangles (see Young and Lavis 1979, Southern
and Lavis 1980 for details) and we have altogether a six-dimensional space of couplings.

With a suitable choice of relationships between the coupling constants, the full six-
dimensional space reduces to a three-dimensional subspace which has the symmetry of
an extended three-state Potts model (Young and Lavis 1979). In order to preserve this
symmetry we adopt the block spin weight function used by Schick and Griffiths (1977)
and Young and Lavis (1979). The conditions for the initial Hamiltonian in equation (1)
to lie in this subspace are u = —3(6 + €)and w = 38 — € and we shall see later that the
fixed points in this extended Potts subspace describe the critical behaviour at special
points on the phase diagram.

The phase diagram is determined by iterating the recurrence relations for the coupling
constant (see Southern and Lavis 1980 for a more detailed discussion). A trajectory which
begins at a point where the behaviour of the system is not critical will iterate to a sink
which characterises that phase. These regions are separated by the critical regions which
form domains of attraction for the critical fixed points. Once these fixed points have been
located, the recurrence relations can be linearised about the fixed points and the eigen-
values 4, of the linear equations can be calculated. The critical exponents y, are related
to the eigenvalues by A, = b*, where b is the scale factor and is equal to /3 in the present
calculation.

3. Phase diagram and critical behaviour

At zero temperature, the behaviour of the model defined in equation (1) can be obtained
most easily by comparing the ground-state energies of the seven possible configurations
C{j = 1,2,...,7) of each elementary triangle. The energies € (j = 1,2,...,7) of these
configurations are given in table 1 in terms of the parameters u, w, 0, and €. The
ground-state phase diagram is shown in figure 3 in terms of the reduced variables
z=(0 - ¢€)/0 + €),w = w/(0 + €)and i = p/(f + €).Inour analysis we have considered
only cases for which both 8 > 0 and € = 0 from which it follows that —1 <z < 1.
Qualitative differences occur in the zero-temperature phase diagrams for negative and
positive values of z and these cases are shown in figures 3(a) and 3(b) respectively.

The only stable ground states are found to be those corresponding to the lattice
completely filled by triangles all of which are in one of the configurations C,, C,, C, or

Table 1. Spectrum of (-4 H,).

Configuration Degeneracy Energy

(oF w; €]

C, {0,0,0] 1 0

C,[£1, £1,+1] 2 By + 30 + 3¢)/2
C,[0,0, =1] 6 /6

C,.[0, £1,£1] 6 B2u + 36 + 3€)/6
C[£1 L, F1] 6 Bl — 0 + 3¢ + )2
Co [+1,0, =17 cpic 3 f2u — 36 + 3¢ + 3w)/6
C: [+ 1 =1, 0], epene 3 pap = 30 + 39/6
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Figure 3, Zero-temperature phase diagram as a function of the reduced variables W =
wil+e)i=p/@+e)andz=0+e€)(f +e¢)for{a) 1<z <0and B 0<-<1.In
both cases the point which lies in the extended Potts subspace at all temperatures is indicated
by a cross.

Cg. The vacant state C, corresponds to the gas phase of the model and C, is the close-
packed (ferromagnetic) solid phase. The close-packed antiferromagnetic state C; is
highly degenerate with the same ground-state entropy as the spin —% Ising antiferro-
magnet on a triangular lattice and corresponds to the liquid phase of the model (Southern
and Lavis 1980). At intermediate values of ji and W, the open honeycomb (antiferro-
magnetic) structure C, which describes a lower-density commensurate solid phase,
appears. The domains of these phases at finite temperature are the regions of attraction
of the corresponding sinks of the recurrence relations for the renormalised couplings.
A numerical study of the trajectory flows allows the construction of the phase diagram
in the temperature—chemical potential and temperature—density planes for any initial
choice of the parameters z and W. Since the aim of this paper is to present a model which
exhibits a wide range of possible behaviour rather than to investigate all cases in detail,
we have concentrated our attention on the cases z = +1 for a number of typical values
of w. However, we have investigated the fixed point structure for intermediate values of
z as well. We find that the case z = —1 is typical of all values of z which are negative
whereas the case z = + 1 is a special case for positive values of z. The differences between
z = +1andz < 1 will be discussed in § 3.3.

3.1lz= -1

Our results for the phase diagram in the case z = — 1 are shown in figures 4(a)(e). This
case corresponds to the original model introduced by Bell and Lavis (1970) and some of
the results for positive values of W have been discussed in the paper by Southern and
Lavis (1980). Five basic types of behaviour can occur depending on the value of w.

(i) w < — 1. Figure 4(a) shows a typical phase diagram both as a function of the
reduced chemical potential i = u/e and the molecular number density p. The phase
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Figure 4. Phase diagrams for z = —1 (0 = 0) in
terms of both the reduced chemical potential y/e
and the molecular number density p. The gas,
i liquid and close-packed solid phase are denoted
‘ by the symbols G, L and S respectively. The open
honeycomb solid phase is denoted by S. Regions
of coexistence between two phases are indicated
with a plus sign between the two symbols which
‘ G+L represent the phases. First-order transitions are
| indicated by broken curves and second-order
| transitions are indicated by full curves (a)
w/e = =50, (b) wie = =05, (c) wie = 00, (d)
w/e = 40, (e) wie = 10:0.
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diagram is qualitatively identical to that observed experimentally for monolayers of
krypton or nitrogen adsorbed on graphite (Ostlund and Berker 1979). At low tempera-
tures there is a first-order transition (broken curve) between the gas phase (G) and the
close-packed solid phase (S) while at higher temperatures there is a second-order transi-
tion between the liquid phase (L) and S. The coordinates and exponents of the fixed
points which control these transitions are given in table 2. The first-order transition is
described by the discontinuity fixed point GS which has a characteristic relevant ex-

ponent y, =d =2 (Nienhuis and Nauenberg 1975) and the liquid-solid transition is

controlled by the fixed point LS which is identical to the fixed point found by Schick

et al (1977) for the spin — £ Ising ferromagnet. These two phase boundaries meet at the

tricritical point T,, which lies within the domain of attraction of fixed point N. This

latter fixed point is identical to that found by Mahan and Girvin (1978) for the tricritical

transition in the ferromagnetic Blume-Capel model (Blume 1966, Capel 1966).
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The phase diagram changes qualitatively as W passes through the value w = — 1. At
this value the tricritical point T, actually lies in the Potts subspace and flows to the fixed
point F which was found by Schick and Griffiths (1977) in their study of the ferromagnetic
three-state Potts model. In the present model the point T,, plays the role of a special
tricritical fixed point.

(i) —1 < w < 0.Figure 4(b) shows the type of behaviour which is typical of small
negative values of w. In addition to the transitions of the previous case, there is now a
temperature range below the point C for which a first-order gas-liquid transition occurs.
This transition is controlled by the first-order fixed point LG whereas the transition at
the critical end-point C itself is described by the fixed point X. The liquid-solid, gas—
liquid and gas-solid transitions meet at the point T, which lies in the domain of attrac-
tion of fixed point V. This latter fixed point has two rélevant exponents and describes the
meeting of one critical and two first-order surfaces. The exponents exhibit typical critical
end-line behaviour (Berker and Wortis 1976), combining a leading y, = d = 2 with a
y, = 0:638 in close agreement with the leading exponent of LS. As w passes through zero
we again have a qualitative change in behaviour marked by the complete suppression
of the close packed solid phase.

(iii) (iv) (v) W = 0.The results shown in figures 4(c)—(e) have been discussed previously
by Southern and Lavis (1980) in connection with the Bell-Lavis bonding model and will
be considered here only briefly. The type of behaviour shown in figure 4(c) occurs in the
range 0 <Ww <3. However, for values of W greater than 3, a second solid phase appears
at intermediate densities whose structure has an open honeycomb (antiferromagnetic)
arrangement of molecules. The transition between this solid phase (S) and the liquid
phase is second-order and controlled by the fixed point LS. The gas-solid and gas—
liquid transitions are first-order and described by the first-order fixed points GS and LG
respectively. The three phase boundaries intersect at the point T, which flows to the
fixed point Y. For larger values of w the points C and T, converge until finally the be-
haviour shown in figure 4(e) is attained where the first-order liquid—gas transition has
completely disappeared. The gas-solid and liquid—solid phase boundaries meet at the
tricritical point T,, which lies in the domain of attraction of the fixed point AF”. The
changeover from the type of behaviour shown in figure 4(d) to that shown in 4(¢) occurs
at an intermediate value of W when the domains of attraction of fixed points X, Y and
AF* intersect. This special point is controlled by the special tricritical fixed point Z.
In contrast to the special tricritical fixed point F in §3.1(i) above, Z does not belong to the
universality class of the three-state Potts model.

32,z =+1

Our results for the phase diagram in the case z = +1 are shown in figures 5(a)~{(c). This
corresponds to the case € = 0 which forw = 0reduces to the Blume—-Capel model (Blume
1966, Capel 1966). For z = + 1, three basic types of behaviour can occur depending on
the value of w.

(i) W < 3.The results shown in figure 5(a) are qualitatively the same as those exhibited
in figure 4(a) and the same fixed points control the various transitions, The change over
in behaviour to that shown in figure 5(b) occurs at w = 3. At this value of W the tricritical
point T, flows to the special multicritical point B* which lies in the extended Potts
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Figure 5. Phase diagrams for z = + 1 (¢ = 0) in terms of both the reduced chemical potential
u/0 and the molecular number density p. The gas, liquid and close-packed solid phases are
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subspace. Our investigations indicate that the role played by B* is particular to the
case z = +1 and that for values of z in the range 0 < z < 1 different fixed points control
the transitions. The fact that z = + 1 represents a special case can be easily seen from
the ground-state phase diagram in figure 3(b) where for z = 1 the point which lies in the
extended Potts subspace is also at the coexistence point of the phases C,, C, and C4. A
brief discussion of the more general case is given below in § 3.3.

(i) 3 < w < 4. Figure 5(b) shows the phase diagram for a typical case with W in this
range. Interposed between the gas and close-packed solid phases we now have a region
of stability for the open honeycomb solid phase (S) at low temperatures. The transition
between the close-packed solid phase (5) and the open solid phase (S) as well as the
transition between the gas phase (G) and S are first order and described by the fixed
points SS and GS respectively. The transitions from the liquid phase to S and S are both
second order and controlled by the critical fixed points LS and LS respectively. These
two second-order phase boundaries meet at the bicritical point B, which flows to the
bicritical fixed point M of table 2. The first-order gas-open solid phase boundary meets
the second-order liquid-open solid boundary at the tricritical point T, which lies within
the domain of attraction of the fixed point AF *. As the value of w approaches four, the
close-packed solid phase S is progressively suppressed.

(iii) w > 4. Figure 5(c) shows a typical phase diagram for w =4 and the behaviour is
qualitatively the same as that shown in figure 4(¢). The various transitions are controlled
by the same set of fixed points in both cases.

33.0<zx1

In all of the cases considered for z = +1, a first-order liquid-gas transition does not
occur. This behaviour is peculiar to z = +1 and will be qualitatively different for all
positive values of z less than unity. For negative values of z, the appearance of the first-
order liquid—gas transition as W increases is marked by the sequence of fixed points N,
F, V and this will also be the case for 0 < z < 1 with F playing the role of a special tri-
critical fixed point. Hence the phase diagram will be the same as that shown in figure 4(b)
for values of W in the range 1 + 2z < W £ 2 + z. For values of w > 2 + z, the open-
solid phase has a region of stability between the close-packed solid phase and the gas
phase. The appearance of this phase is marked by the sequence of fixed points V, U, Y.
The fixed point U is a special critical end-line fixed point which describes the appearance
of the second-order transition between the liquid and open-solid phases. The disappear-
ance of the first-order liquid—gas transition at larger values of W is associated with the
sequence of fixed points Y, Z, AF™, just as it is in the case of negative values of z. Hence
the case z = +1 is special, with the multicritical fixed point B* taking us directly from
tricritical behaviour described by the fixed point N to tricritical behaviour described by
AF™* without the appearance of a first-order liquid—gas transition.

4. Summary and conclusions

In this paper we have considered a lattice fluid model on a triangular lattice which
describes the ordering that may occur in adsorbed monolayers of molecules which have
an orientational degree of freedom. The phase diagram was determined for various
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choices of the coupling constants using RSRG techniques and the model was found to
exhibit many types of complicated multicritical phenomena. The coexistence of both
ordered-ordered and ordered—disordered phases occurred. There are four different
phases corresponding to the gas, liquid and two distinct types of commensurate solid
phase. The fixed points which control the transitions between these different phases
were determined and in all the cases studied the melting transition was found to be
continuous. Our results may have some application to monolayers of methane or
ammonia adsorbed onto a graphite substrate.
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